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Abstract 

In this paper, we have reviewed the behaviour of a variety of models of collapse 
transitions in linear and branched polymers. Both rigorous and numerical results are 
presented. Some of the work described is still in progress, so the results are incomplete. 
Nevertheless, the overall picture demonstrates how the association of an attractive 
fugacity between nearby monomers can give rise to a collapse transition in a wide 
variety of models. These then qualitatively describe the transition undergone by collapsing 
linear and branched polymers. 

1. Introduction 

We discuss a number of recent studies of models of collapse in both linear 
and branched polymers. We present both rigorous results in the form of existence 
proofs and bounds on thermodynamic quantities, numerical results used to locate 
the positions and identify the nature of the collapse transition, and exact results for 
a simplified model that nevertheless retains the essential features of a more complicated 
model. We also consider the effect of particular geometrical constraints on the 
linear polymer system. 

A linear polymer molecule in dilute solution in a good solvent can be modelled 
by a self-avoiding walk (saw) on a regular lattice. By suitably weighting near- 
neighbour interactions with an appropriate fugacity, the (infinite) walk is believed 
to undergo a transition which adequately models the transition in real polymers 
brought about by the dominance of attractive forces at low temperatures or a poor 
solvent. When the fugacity is neutral, or favours near-neighbour repulsion, the walk 
is in a swollen phase, corresponding to the behaviour in a good solvent. As the 
fugacity is weighted towards attraction, the walk adopts a more compact configuration. 
Between these two regimes is an intermediate regime, corresponding to a tricritical 
point. This model, based on weighting saws has been studied theoretically by many 
authors [ 1-7].  A related model in which the collapse transition in suitably weighted 
self-avoiding polygons has been studied is reported in [8]. 
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Just as saws model  linear polymers,  so do lattice animals model  the 
configurational properties of randomly branched polymers in dilute solution in a 
good solvent. As the solvent quality deteriorates, branched polymers are expected 
to become more compact and a collapse transition analogous to that discussed above 
is expected to occur. In these models, one associates a fugacity with every cycle, 
so that the energy is proportional to the cyclomatic index. Making this energy 
suitably attractive is then expected to lead to a collapse phenomenon, since animals 
with many cycles will be more compact than those with few cycles. This model has 
also attracted considerable attention [ 9 -  14]. For a directed animal problem, it can 
be proved that there is a collapse transition [15]. 

In subsequent sections, we describe our work on several models and report 
the results obtained to date. In some cases this is ongoing work, and additional 
results are expected to be forthcoming and will be published subsequently. 

2. Walks  crossing a square  

In this problem, we consider self-avoiding walks on the square lattice which 
are confined to lie in or on the boundary of a square with vertices at (0, 0), (0, L), 
(L, 0), and (L, L). We first consider the number of such walks that begin at the 
origin and end at the vertex (L, L), especially in the large L limit. At fixed L, we 
also associate a fugacity with the number of steps in the walk and ask how the 
system behaves as a function of this fugacity. 

Both problems have been investigated both analytically and by series analysis. 
We denote by cn(L) the number of  saws with n steps confined to lie in the L × L 
square and which start at the origin and finish at (L, L). Denote by c(L) the sum 
~ c~(L). By considering the maximum and minimum value of  n for fixed L, we can 
prove that 

lira sup L -2 log c(L) < log/.t, (2.1) 
L - - - ~  ~ 

where # is the growth constant for saws on the square lattice. By partially covering 
the L x L square with smaller squares of side M + 2, it is possible to prove by 
concatenation arguments that the limit 

lim L -2 log c(L) = log ~ (2.2) 
L - - - )  ~ 

exists. We obtain a lower bound on c(L) by observing that, for L even, walks with 
the maximum number of steps are Hamiltonian walks. A lower bound for the 
number of  such Hamiltonian walks is obtained by a construction similar to that used 
by Gujrati [26]. The square is effectively covered by disjoint rectangles of  size 
(1 × m). We consider all possible ways of  joining these rectangles so as to form 
Hamiltonian polygons, and this gives the bound 
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log #r~ > log m/[2(m + 1)]. (2.3) 

This bound is most effective when m = 4, when it is equal to 0. 1386 . . . .  Finally, 
to convert the polygon to a walk crossing the square we remove and insert appropriate 
edges. This does not change the bound, so that we finally have: 

lim L-21ogc(L) > O. 1386 . . . .  (2.4) 
L - - )  oo 

That is to say, we have proved that the number of  distinct self-avoiding paths grows 
exponentially with the area of the lattice, rather than exponentially with its linear 
dimension. Similarly, the mean number of steps in such a path (n) = ]~ n c,(L)/~, cn(L) 
must be of  order L 2, as can be seen by the following argument. Firstly, observe 
that cn(L)< #~+o(~ If n = o(L2), then c,(L)<_ #o(L~ so that all except exponentially 
few walks have of  order L 2 steps. Hence, the mean number of  steps must also be 
of  order L 2. 

Numerically, we have derived exact values of  c,(L) for L < 6. Summing 
over n, we obtain c(L) values which, when extrapolated, permit us to estimate 

= 1.75 +0.01.  
For the second aspect of  this problem, we introduce a step fugacity x, and 

consider the generating function 

CL(x) = ~.~cn (L)x n. (2.5) 
n 

By a refinement of  the proof  discussed above, we can prove the existence of  the 
limit 

lim L -2 log CL (x) = log &(x). (2.6) 
L ---) oo 

To estimate X(x), we first note that for x _< 1 an upper bound is obtainable by observing 
that every walk which crosses the square is "doubly unfolded" (that is, the end- 
points are the "top" and "bottom" points). Since such walks can be concatenated to 
give a supermultiplicative inequality, we have cn(L)< #n and hence that 

CL(X) <- Z # n x  n= ( # x ) 2 L ( 1 -  (#x)n~'~-2L+I)/(1- #). (2.7) 

If x > l/p, then (2.7) implies that log 2(x) < log # + log x. If x < 1/#, we have that 
log)~(x) < 0, and combined with the bound CL(x) > c2L(L)x 2L, this implies that 
log &(x) = 0 for all x < 1/#. Hence, log A.(x) is non-analytic. To determine the point 
of  non-analyticity, we note that CL(x) > C~m~,(L)x'~, and so log Mx) > log #H + log x, 
where #H is defined above. Thus, there must be a singular point x* in the range 
1/# < x* < 1/#t t. To investigate this numerically, we have studied the mean number 
as a function of  fugacity. We define this quantity by 
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( n ( x , L ) )  = 
n n 

(2.8) 

and expect that (n(x, L)) = A(x)L2[1 + o(1)]. We have estimated A(x) for a range of  
values of  x, and found that it vanishes between x = 0.3 and x = 0.4. From the above 
bounds on x*, we have that 0.37905 < x* < 0.1386. It is thus tempting to suggest 
that x* = 1/~t exactly, although we have been unable to prove (or disprove) this 
suggestion. Our numerical data are insufficient to estimate the critical exponents 
associated with the transition. Further details of  the calculation will be published 
elsewhere [16]. 

3. Collapsing b r anched  polymers  

Here, we consider a lattice model of  a branched polymer in dilute solution 
in which the polymer is modelled both by weakly embeddable lattice animals and 
by trees. The models are motivated by the idea that randomly branched polymers 
can clearly be modelled by animals, while work by Lubensky and Isaacson [9] 
suggests that cycles are relatively unimportant, so this suggests the simpler model 
of  a lattice tree. Details of  the models and this work will appear [17, 18], and here 
we present a summary of  the main results. 

A site-animal is a connected section graph of  the underlying lattice, and we 
denote the number of  these as A n (Bn), where n refers to the number of  vertices 
(edges). A bond-animal is a connected subgraph of  the underlying lattice, and we 
denote the number of  these as a n (bn), where again n refers to the number of  vertices 
(edges). Trees are acyclic animals, and we denote by T n and t n the number of  site 
and bond trees, respectively, with n vertices (and hence n - 1 edges). In each of  the 
six cases above, concatenation arguments enable us to establish the existence of the 
limit 

lim n- l logXn = logXx, (3.1) 

where X n refers to any of  the six quantities defined above. The corresponding 
growth constants ~.x are known to be finite and non-zero. In order to study the 
collapse transition, we associate an energy with contacts, where a contact is defined 
to be two adjacent vertices not joined by an edge. This definition clearly precludes 
site animals and site trees. I fX, (u)  denotes the number of  bond beasts (animals with 
n vertices, animals with n edges, or bond trees), the corresponding partition function 
and free energy are given by 

and 

Zn ( fl ;X ) = ~ X  n (u) exp (flu) (3.2) 
U 

G(fl;X) = lim n-llogZn(fl;X),  (3.3) 
n - - ~  oo  
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respectively. Alternative models arise if we weight not by an energy associated with 
the number of  contacts, but with the cyclomatic index. In that way, (3.2) and (3.3) 
have "u" replaced by "c", where c is the cyclomatic index. Since trees have cyclomatic 
index zero, this model is restricted to animals (now incuding site animals). We 
denote the partition function and free energy as above, with superscript "0" to 
indicate this model. Thus, we have three models in which we weight by contacts 
and four models in which we weight by cyclomatic index. 

For all seven models, we have proved that the free energy exists, that it is 
convex, monotone and continuous. Useful bounds on the free energy have also been 
derived. 

Numerical studies have established the fl dependence of  the free energy, based 
on exact enumeration data. In particular, Gaunt and Flesia [14] have examined the 
temperature dependence of  the heat capacity for various values of n, and have estimated 
the location of  the phase transition by extrapolating the locations of  the maxima in 
these curves. 

4 .  A directed walk model 

In this work, we considered a variant of  the interacting saw model which is 
exactly solvable. On the square lattice, we consider saws in which no step in the 
negative x direction are allowed. In the non-interacting case, this is a straightforward 
model to solve. The generating function for n-step walks is singular at (1 + ,12) -1, 
with a simple pole singularity at that point. However,  if we consider the number 
of  n-step walks with m near-neighbour contacts cn(m), the problem is more difficult, 
but can still be exactly solved [19 - 22]. To simplify certain calculations, we impose 
the additional technical condition that the first step of  the walk is in the positive 
x-direction. 

A number of  rigorous results can be obtained by concatenation arguments. 
Consider the generating function 

Zn(x )  = ~ c n ( m ) x  n (4.1) 
Iq l  

and the corresponding quantity 

~c(x) ; lira n -1 logZ~ (x), (4.2) 

then, as noted above, ~1 )  = log (1 + ,12). Concatenation arguments, plus the observation 
that Z,,(x) 1In is bounded above for x < oo, are sufficient to establish the existence of  
the limit (4.2), and its finiteness for x < oo. Further, the functional inequality derived 
by concatenation implies that ~c(x) is log-convex and hence continuous. From the 
observation of  monotonicity of  ~c(x) in both the regimes x < 1 and x > 1, plus the 
fact that max(m) = n + o(n),  we prove that 
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lira ~c(x)/logx = 0 ,  l i m  ~¢(x)/logx = 1. ( 4 . 3 )  
X _..~ 0 ~ X -----~ + ~  

We shall find it useful to define the two-variable generating function 

G(x ,  y )  = ~ cn(m)xrny n. (4.4) 
n , m  

At fixed x, G(x, y) converges for y < e x p ( -  to(x)), which defines the phase boundary 
y = y(x) in the (x, y) plane. From (4.3) it follows that, for large x, y -  1/x. 

We now use the technique of Temperley [23] to derive an explicit expression 
for G(x, y). Let c,(r,  m) denote the number of n-step walks with m contacts and the 
first step in the positive x direction and then exactly r steps in the y direction (the 
(r + 1)th step must be in the positive x direction). We define the generating function 

gr (x , y )  = ~_.~c. (r, m)xm y n (4.5) 

and then write down recurrences for the g, for r > 0. By eliminating terms between 
the gr we obtain the recurrence relation 

g,, + 1 - ( 1 + x)y  g,, - ( 1 - x)xny  " +2g,, + xyZ g,, _ 1 = O. (4.6) 

After some manipulation, we obtain 

G = [2yg" 1 - ( 2 + y  - x y ) g ' o l / [ y 2 ( 1  + x + y  +xy)g'o - 2yg] l, (4.7) 

where 

g, = y ,  + y ,  ~., zm , (y  _ Z)mzm(m + 1)/2 (Z k -  1) (y  Z k --Z 
m = O  k = l  

(4.8) 

and z=xy .  
The phase boundary is the locus of singular points of  G closest to the x-axis 

for positive y. An analysis of  g~ and g[ shows that they are analytic except on the 
hyperbola z = 1. Hence, from (4.7) we see that G is analytic except on this hyperbola 
and at zeros of the denominator of (4.7). The recurrence relation (4.6) can also be 
solved on the hyperbola z = 1, where 

1 
G ( 7  ' y )  = y(1 + ) t , ) / ( 1 -  X - y ( 1  + $)) 

and (4.9) 
1 = 2 {  1 + y 2 _  (1 - 4 y  + 2 y  2 + y 4 ) 1 / 2 } .  

We have numerically determined the zeros of (4.7) which lie below the 
hyperbola for x < x* = 9/[(17 + 3~-f3) 1/3 + (17 - 3 " ~ )  1/3 - 1] 2, while for x > x* the 
phase boundary is coincident with the hyperbola z = 1. The point y* = 1/x* is also 
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/ - 1  a pole of tY Y). Physically, the significance of the phase boundary can be seen 
by considering the average value of n at some point (x, y), defined by 

81ogG(x, y) 
<n(x,y)) - Ology (4.10) 

On the phase boundary (n) is infinite, while below the phase boundary it is 
finite. Above the phase boundary, we enter the non-physical region corresponding 
to ( n ) <  0. The point (x*,y*) corresponds to a collapse transition, and models the 
coil - ball transition undergone by real polymers. Full details of this model will be 
reported in [22], while a number of results are already reported in [20]. A related 
model in which all horizontal segments are of equal length was introduced by 
Zwanzig and Lauritzen [27-29] .  

5. The collapse transition in two-dimensional vesicles 

In this problem, we [24] enumerated self-avoiding polygons on the square 
lattice by both perimeter and area. By associating a fugacity with both area and 
perimeter, we can induce a collapse transition along a line of critical points in the 
two variable fugacity plane. We consider the numberp~ (n) of polygons on the square 
lattice with m edges enclosing area n. The generating function for such polygons 
is given by 

P ( x , y ) =  E b'rn myn = E p  m (y)x m = EA11(x)y ,  ' 
F11~11 Ol  II 

(5.~) 

where Pro(Y) and All(x) are, respectively, the generating functions for polygons of 
perimeter m and area n. The generating function P(x, y) can be considered a grand 
partition function. 

By considering polygons with maximum area for fixed perimeter, we show 
that 

lim m-21ogPm (y) = logy/16 for all y > 1. (5.2) 
m ---) oo 

For 0 < y < 1, lira m ~ j n  -1 log Pro(Y) = ( Y )  exists and is finite. We note that ~¢(1) = ~c, 
the usual connective constant for polygons grouped by perimeter. 

From the observation that 

P~ (Yl)'~n (Y2)-> [Pro (~)]2, (5.3) 

it follows that ~c(y) is log-convex. 
By considering the polygons of minimum area with fixed perimeter, we 

obtain the bound to(y) < tc+ 1/2 logy. Observing that these are just the number of 
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a class of site trees on the dual lattice, we can concatenate them and hence prove 
the existence of the thermodynamic limit K" o in that case. Hence, 

~'(y) >_ (~c o + logy) /2 .  (5.4) 

The two bounds together imply 

lim ~¢(y)/logy = 1/2. (5.5) 
y - - > 0  + 

Now the grand partition function can be written as 

P(x, y) = ~em~:(Y)+°(m)x m, (5.6) 
m 

and for fixed x this converges forx < e -~'(y), so that x = e - x ( y )  defines a phase boundary. 
For x > e - r ( y ) ,  the free energy is not extensive. As y -+ 0, x --+ ~ as 

X - y - I / 2 .  (5.7) 

Further, as ~c(y) is monotone non-decreasing, x(y) is monotone non-increasing. Further, 
x(y) is bounded below by e - r  for y _< 1 and then jumps discontinuously to zero. The 
bounds established above enable us to write 

e-':o >_ x2y >_ e -2~'. (5.8) 

Similar results have been obtained for the generating function An(x). The limit 

lim n-: logA, (x) = Z(x) (5.9) 
~i ---) o o  

exists, and we show that Z(X) is log-convex. Additional simple arguments allow 
us to obtain the bounds 

z ( l ) + 2 1 o g x > - Z ( X )  > l i m n - l l o g p ~ 2 + 2 + 2 1 o g x  
gl ---)  ~ 

Hence, 

for x > 1. (5.10) 

z(x) 
lim - 2. (5.11 ) 

x ~ 0~ log x 

For x < 1, we prove that Z(X) < 2t¢+ 2 log x when e -~'< x < 0, and Z(x) = 0 
when x -< e-5 Similar results have been obtained for three and higher dimensions. 
In d dimensions, we now treat surfaces in Z a made up of  elementary unit ( d -  1)- 
dimensional "hypersquares". A similar phase boundary is obtained, and the analogous 
result to (5.7) is 
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X ~y-t/(2d-2) as y --+ 0 +. (5.12) 

In all dimensions, the phase boundary x(y) is monotone non-increasing and jumps 
discontinuously to zero at y = 1. 

In two dimensions, we have constructed an accurate numerical phase diagram 
by enumerating all polygons with perimeter <44 for aH areas. We analysed the 
series for fixed y, and determined x(y) in this way. The resulting phase diagram is 

2.0 

X 

1,5 

1.0 

0.5 

÷ 

4-  

4 .  , t -  < ,  ÷ 

,,~ . . .  ÷ ÷ 

0 , 0  I I I I I 

0.0 0.2 0 .4  0.6 0.8 1.0 1.2 

YC (x) 

Fig. 1. Phase diagram of two-dimensional vesicles. Above the phase boundary, 
the free energy is no longer extensive. The solid curves are the upt~r and 
lower bounds, the broken curve is the numerically determined phase boundary. 

shown in fig. 1. In the vicinity of the multicritical point, the grand partition function 
behaves, to leading order, as 

P(x, y) - C o I~12- ,~o Z( 'y/  I~'1 '~) + B(x,  y), (5.13) 

where the scaling axes ~, ~ are given by 

= x  c - x + ( y - l ) / e z ,  ~'= 1 - y .  
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a o = 1/2 is the usual polygon exponent, and Z(z)  is a scaling function with 
normalisation Z(0)=  1. The crossover exponent ~0 is shown to be equal to 
2v = 3/2, where v = 3/4 is the usual saw correlation function exponent. 

6. The collapse of self-avoiding polygons 

If we introduce an energy term associated with near-neighbour contacts, we 
would expect a collapse transition in polygons just as in walks [8]. One technical 
reason for studying the polygon problem is that polygons can be concatenated 
without (substantially) changing the total number of contacts. A second reason for 
studying this problem is that it allows us to investigate the influence of architecture 
on the collapse transition. 

We consider the square lattice. Let p . (m)  be the number (per lattice site) of  
polygons with n edges and m near-neighbour contacts. Clearly, 

~_.,p~ (m) = p. , 
m 

the total number of  polygons, and 

(6.1) 

lim n -1 logp.  = ~¢ (6.2) 

exists, which is the connective constant of  the lattice. We can define the partition 
function 

Z . ( f l )  = ,~_.,p. (m)e/3m (6.3) 
??t 

and we are interested in the properties of the corresponding limiting free energy. 
Pairs of  polygons can be concatenated by the addition of a "neck" [24] to give 

the functional inequality 

p. (m) = ~ P n  (ml)Pn-nl  (m - m l  - 2), (6.4) 
ml 

which easily gives the existence of the limit 

lim n -1 logZn(f l )  ~A(fl). (6.5) 

Moreover, A(fl)  is convex and hence continuous. 
Clearly, A(O) = ~c and, by monotonicity, A(f l )  < tc for fl < 0 and A(fl)  > Ic for 

f l>O. F o r f l < O ,  

p.(O), (6.6) 
SO 
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A(/3) > ~¢0, 

where I¢ o is the connective constant for neighbour-avoiding walks and, for/3 > 0, 

Pn el3rn~x > Zn(fl)  -> P. (mmax) e/3rn'~" (6.7) 

Since mma × = n/2 + o(n), taking logarithms, dividing by n and letting n ---) ~,, we 
have 

x'+/3/2 > A(fl) > max[r ,  x'* +/3/2], (6.8) 

f o r / 3 >  0, where f f  = lim n -1 logpn(mmax), and hence lim~_~=A(/3)//3= 1/2. 
Although these results give useful information on the general behaviour of  

A(/3), they do not establish that the model shows a phase transition. To investi- 
gate this, we have derived exact values of  p,(m) for n < 34, and computed 
c~(fl) = 02A.(/3)/~ /32, where 

A.(/3) = n -1 log Z.(fl),  

for a range of  values of  ft. In fig. 2, we show the dependence of  c~(fl) for 
n = 14-34.  There is a fairly sharp peak whose position is only weakly dependent 
on n. By extrapolating the peak positions, we estimate that the transition occurs at 
/30---0.64. 

14 

12 

i0 

8 

6- 

4- 

2" 

I t I f 
4 5 

Fig. 2. Contact fluctuation as a function of attractive 
fugacity exp(w) for polygons of sizes 14, 16 . . . . .  34. 
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Further numerical and Monte Carlo work is still being undertaken [25] and 
will be reported elsewhere. 

7. Conclusion 

We have described five different models of collapse transition, and shown 
how in each case a combination of rigorous and numerical results elucidate the 
nature of the collapse transition. In each case a fugacity is associated with a particular 
property of the model, usually the number of adjacent monomers or the area. By 
making this fugacity attractive or repulsive, one switches from a collapsed to an 
expanded state. This transition is seen in real polymeric systems in, for example, 
the coi l-bal l  transition. It is hoped that the description here of a range of models 
will gather together a sufficiently broad range of techniques to permit subsequent 
models to be similarly studied. 
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